

Food Chemistry 66 (1999) 455–461

Food Chemistry

www.elsevier.com/locate/foodchem

Cholesterol content of Indian fish and shellfish

Suseela Mathew*, K. Ammu, P.G. Viswanathan Nair, K. Devadasan

Central Institute of Fisheries Technology, Willington Island, Matsyapuri PO, Cochin 682 029, India

Received 14 October 1998; received in revised form and accepted 7 December 1998

Abstract

Ninety-seven samples of fish and 17 samples of shellfish from tropical waters were analysed for fat, nonsaponifiable matter (NSM) and cholesterol contents. Significant differences were noted in the cholesterol contents of the various families of fish analysed. However, the variation in the content of cholesterol was found to be not significant within the families. Higher contents of cholesterol were observed in shellfish than in fish. No correlation existed between the fat content of the fish/shellfish and the levels of cholesterol or NSM. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Cholesterol; Fish; Shellfish; Nutrition labelling

1. Introduction

Consumer awareness regarding the nutritional quality of food is increasing. In developed nations, Nutrition Labelling is becoming compulsory, which makes it mandatory to label all marketed processed food products with their nutrient contents to enable the consumer to maintain a healthy food regime (Sehat & Niedwetzki, 1998). The Nutrition Labelling and Education Act (NLEA) of 1990 in the USA has formulated, for the first time, labels with information on nutrient contents of processed foods. The Association of Official Analytical Chemists (AOAC) International formed a task force for defining the methods for nutrient labelling analysis (Sullivan & Carpenter, 1993). According to this task force, fat is defined as the sum of fatty acids expressed as triglycerides. Contents of vitamins and cholesterol are to be indicated in the label, separately. As dietary cholesterol is known to affect serum cholesterol (Ammu, Sankar & Devadasan, 1996; Nair, Devadasan & Antony, 1985; Nair & Gopakumar, 1981; Sanchez-Muniz, Higon, Cava & Viejo, 1991), information on the daily dietary intake of cholesterol can be quite important, especially to those with cardiovascular problems. A nutrition label has mandatory and optional dietary components. Both fat and cholesterol are included as mandatory components. In this context, the information on the cholesterol content of Indian food fish assumes significance. Marine products have become a major

2. Materials and methods

Ninety-seven samples of fish and 17 samples of shell fish were analysed for their fat, non-saponifiable matter (NSM) and cholesterol contents. Only the edible portion of fish and shellfish was used for analysis. Muscle from four to five fish was minced together and representative samples of 30 g in duplicate were taken for analysis. Prawn was used in the peeled and undeveined condition. Antartic krill samples were collected during the FIKEX 1995-96 expedition of the Research vessel FORV Sagarsampada. Other samples were collected during Cruise 153 of FORV Sagarsampada, from local markets and aquaculture farms. Lipid content was determined by extraction with chloroform methanol mixture (Bligh & Dyer, 1959), NSM by the method of AOAC (1990) and cholesterol by the ferric chloride method as described by Rudel and Morris (1973). Cholesterol standard was procured from Sigma Chemicals. Other chemicals were of analytical grade from BDH. Statistical analysis for cholesterol content between

export item from India, accounting for 3.4% of the total exports. The overseas markets may insist on nutrition labelling data for these products. Although the composition of almost all Indian food fish is known, data on their cholesterol contents are inadequate. An attempt is made here, for the first time, to quantify cholesterol in common food fish and shell fish of Indian waters in order to obtain a database for nutrition labelling.

^{*} Corresponding author.

Table 1						
Content of cholesterol,	NSM	and	fat (a)	in fis	h, (b) ir	shellfish

No. family	Species	Common name	Length Weight (average)		Month	Cholesterol	NSM	Fat
			(cm)	(g)		(mg%)	(g%)	(g%
(a) Fish								
1 Acanthuridae	Acanthurus xanthopterus (Valenciennes, 1835)	Yellow fin surgeon fish			October	33.8	0.05	0.99
2 Ariidae	Arius jella (Day,1877)	Black fin sea catfish	25	300	July	58.3		1.6
3 Ariidae	Arius jella (Day,1877)	Black fin sea catfish	32	315	March	56.9	0.09	0.72
4 Ariommidae	Ariomma indicus (Day, 1870)	Indian drift fish		010		59.9	0.25	2.4
5 Belonidae	(Day, 1870) Strongylura strongylura (Van Hasselt, 1823)	Spot tail needle fish	35	145	Februray	55	0.07	0.86
6 Bothidae	Pseudorhombus sp	Flounder	15	40	March	64.7	0.13	0.3
7 Bothidae	Pseudorhombus sp	Flounder	14	29.5	March	51.9	0.11	0.55
8 Carangidae	Megalaspis cordyla (Linnaeus, 1758)	Torpedo scad	21	100	Februray	59.1	0.11	1.6
9 Carangidae	Megalaspis cordyla	Torpedo scad	21	100	Februray	62.3	0.15	1.88
) curungidud	(Linnaeus, 1758)	(with skin)	21	100	reoratay	02.5	0.15	1.00
10 Carangidae	Trachynotus ovatus	Pompano	19	193		55	0.1	1.04
11 Carangidae	Caranx carangus	Black tailed trevally	14	968	October	52.6	0.28	7.11
-	(Bloch, 1793) Scomberoides tol	Needle scaled			March	48.1	0.12	1.02
12 Carangidae	(Cuvier, 1832)	queen fish			watch	40.1	0.12	1.02
13 Carangidae	Trachynotus ovatus	Pompano	20	220	October	47.4	0.08	1.94
14 Carangidae	Megalaspis cordyla	Torpedo scad	20	120	March	50.9	0.08	0.64
14 Carangidae	(Linnaeus, 1758)	Torpedo sead	20	120	Waten	50.9	0.00	0.04
15 Carangidae	(Bloch, 1975)	Black pomfret	23	250	March	60.2	0.11	1.09
16 Carangidae	(Bioen, 1978) Decapterus russelli (Ruppell, 1830)	Indian scad	18	49	March	67.6	0.12.	1.34
17 Carangidae	Scomberoides tol	Needle scaled	36	285	March	55.1	0.09	0.88
18 Carangidae	(Cuvier, 1832) Megalaspis cordyla	queen fish Torpedo scad	37	424	March	55.1	0.11	1.01
19 Carangidae	(Linnaeus, 1758) Carangoides malabaricus	Malabar trevelly	16	75	March	55.9	0.16	1.61
20 Carangidae	(Bloch & Schneider, 1801) Carangoides malabaricus	Malabar trevelly				47.6	0.14	1.16
-	(Bloth & Schneider, 1801)							
21 Carangidae	<i>Caranx carangus</i> (Bloch, 1793)	Black tailed trevally	20	99	March	67.3	0.13	1.01
22 Carangidae	Caranx para (Cuvier, 1832)	Banded scad	15	32	March	73.7	0.13	1.73
23 Carangidae	(Schneider, 1802) (Schneider, 1801)	Cleft belly trevally	23	181	March	64.6	0.15	3.41
24 Carangidae	(Schneider, 1801) Atropus atropus (Schneider, 1801)	Cleft belly trevally	18	91	March	57.1	0.09	1.52
25 Chanidae	Chanos chanos	Milk fish	35	300	December	33.6	0.05	0.98
AC (01)	(Forsskal, 1775)	<u></u>			0.1	20.4	0.07	a 1a
26 Chirocentrida	Chirocentrus dorab	Silver bar	10	04.00	October	39.6	0.06	2.42
27 Chirocentrida	Chirocentrus nudus	White fin wolf	49	94.32	March	46	0.2	-
20 Cl :	(Swainson, 1839)	herring	4.5	264	NC 1	20.4	0.1	1.50
28 Chirocentrida	Chirocentrus nudus (Swainson, 1839)	Wolf herring	45	364	March	39.4	0.1	1.56
29 Cichlidae	Oreochromis mossambica	Tilapia female	16	65	December	41.8	0.06	0.51
30 Cichlidae	<i>Etroplus maculatus</i> (Bloch, 1785)	Orange chromicle	7	7.5	December	5.12	0.07	0.71
31 Clupeidae	<i>Opisthoptertus tardoor</i> (Cuvier, 1829)	Tardoore	15	30	July	68.6	0.11	4.9
32 Clupeidae	Opisthoptertus tardoor (Cuvier, 1829)	Tardoore	16	44	October	62.2	0.36	6.3
33 Clupeidae	<i>Opisthoptertus tardoor</i> (Cuvier, 1829)	Tardoore	24	110	March	53.7	0.11	1.46

		Table 1—contd						
34 Clupeidae	Dussumieria acuta (Valenciennes, 1847)	Rainbow sardine	17	41	March	50.4	0.13	0.94
35 Clupeidae	(Valenciennes, 1847) Sardinella melanura (Cuvier, 1829)	Blacktip sardinella	16	49	March	52.7	0.09	1.8
36 Clupeidae	Dussumieria hasselti	Oil sardine	16	25	June	86.5	0.25	4.34
37 Cynoglossida	Cynoglossus dubius	Carrot tongue sole	33	213	March	39.2	0.07	0.47
, ,	(Day 1873)	C						
38 Cynoglossida	Cynoglossus sp	Flounder	19	38	March	48.3	0.1	0.24
39 Cyprinidae	Cirrhinal mrigata	Mrigal				36	0.06	-
	(Hamilton & Buchanan, 1802)							
40 Cyprinidae	Labeo rohita	Rohu	Adult			36.2	0.07	-
	(Hamilton and Buchanan, 1802)							
41 Elopidae	Elops machnata	Lady fish	52	900	December	32.9	0.05	0.47
42 En marchi da a	(Forsskal, 1775)	December 2 thereas	15	20	F -1	54 (0.20	2.16
42 Engraulidae	<i>Tryssa dusumeiri</i> (Valenciennes, 1848)	Dussumier's thryssa	15	30	Februray	54.6	0.26	3.15
43 Ephippidae	<i>E phippus Orbis</i>	Spade fish	11	42	March	82.7	0.26	3.19
+5 Ephippidae	(Bloch, 1787)	Space IISI	11	42	Waten	82.7	0.20	5.19
44 Gerridae	Gerres filamentoses	Whipfin silver biddy	15	84		53.8	0.09	2.35
	(Cuvier, 1829)	-r		5.				2.00
45 Gerridae	Gerres filamentoses	Whipfin silver biddy	18	84	October	45.9	0.09	2.2
	(Cuvier, 1829)	· ·						
46 Haemulidae	Pomadasys furcatum	Grunter	19	100	February	61	0.22	4.63
47 Haemulidae	Pomadasys kaakan	Javelin grunter			March	53.7	0.13	0.67
	(Cuvier, 1830)							
48 Haemulidae	Pomadasys sp	Grunter	15	63	March	63.8	0.12	0.93
49 Hemiramphid	Hemiramphus lutkei	Needle fish		10	October	52.5	0.12	1.74
50 Lactaridae	Lactarius lactarius	False trevally	14	40	July	97.4	0.38	6
51 Laiagnathidag	(Bloch & Schneider, 1801)	Pugnose ponyfish			Max	90.6	0.15	_
51 Leiognathidae	Leiognathus equulus (Bloch, 1787)	Pugnose ponynsn			May	90.0	0.15	_
52 Leiognathidae	Leiognathus splendens	Splendid ponyfish			May	107	0.14	1.1
2 Derognatindae	(Cuvier, 129)	spienala polijilsi			may	10,	0.11	1.1
53 Leiognathidae	Leiognathus bindus	Orange fin pony fish	8	7	March	88.2	0.31	1.85
-	(Valenciennes, 1835)							
54 Lethrinidae	Lethrinus cinerius		44	1200	October	148	0.37	3.26
55 Lutjanidae	Lutjanus gibbus	Humpback red snapper	31	850	March	95.5	0.24	7.7
	(Forsskal, 1775)							
56 Lutjannidae	Pristipomoides filamentoses	Blue spotted job fish			October	80.6	0.2	5.03
57 M 1 1	(Valenciennes, 1835)	0	10	(0	D 1	16.2	0.07	0.02
57 Megalopidae	Megalops cyprinoides	Oxeye tarpon	18-	69	December	46.2	0.07	0.62
58 Mugilidaa	(Broussonet, 1782)	Long arm mullat				62.9	0.25	2.24
58 Mugilidae	Vaiamugil cunnesius (Valenciennes, 1835)	Long arm mullet				02.9	0.23	2.24
59 Mullidae	Upenus vittatus	Striped goatfish	15	50	March	48.7	0.15	1.01
	(Forsskal, 1775)		1.0	55			5.15	1.01
60 Mullidae	Upenus vittatus	Goat fish				43.1	0.1	0.89
	(Forsskal, 1775)							
61 Myliobatidae	Myliobatis nieuhofli	Eagle ray	27	1040	March	56	0.09	0.67
62 Nemipteridae	Nemipterus bleekeri	Pink perch	22	119	March	63.4	0.12	0.8
	(Day, 1875)							
63 Nemipteridae	Nemipterus japonicus	Pink perch	21	130	March	56.4	0.09	0.83
	(Bloch, 1791)	D			F 1	16-	~ -	
64 Nemipteridae	Parascolopsis eriomma	Rosy monacle bream	27	375	February	46.5	0.1	1.56
55 Polynemidae	Eleutheronema tetradactylus	Four finger thread fin	33	500	Februray Marah	63.7 68 5	0.1	0.85
66 Polynemidae	Polynemus sextarius (Bloch and Schneider, 1801)	Blackspot threadfin	15	43	March	68.5	0.11	1.08
67 Priacanthidae	(Bloch and Schneider, 1801) Priacanthus sp	Bull eye	18	75	March	53.1	0.1	0.52
68 Psettodidae	Pracaninas sp Psettodes erumei	Indian tiny turbot	33	587	March	41.6	0.1	0.54
so i settouidae	A DETRUMED ET MINET	manun uny turbot	55	507		11.0	0.07	0.5
69 Scianidae	(Schneider, 1801)	Blotched croaker	23	150	Januarv	38.8	0.12	1.56
69 Scianidae		Blotched croaker	23	150	January	38.8	0.12	1.56
69 Scianidae 70 Scianidae	(Schneider, 1801) Nibea maculata	Blotched croaker Karut croaker	23 18	150 65	January October	38.8 74	0.12 0.08	1.56 1.2

(continued)

No. family	Species	Common name	Length Weight (average) (cm) (g)		Month	Cholesterol	NSM	Fat
						(mg%)	(g%)	(g%)
71 Scianidae	Johniops sinai (Cuvier, 1830)	Sin croaker	14	33	May	69.6	0.1	0.6
72 Scianidae	<i>Johniops sinai</i> (Cuvier, 1830)	Sin croaker	12	18	May	72.1	0.23	0.8
73 Scianidae	<i>Johnius elongatus</i> (Mohan, 1967)	Spindle croaker	16	74	March	65.6	0.11	0.87
74 Scianidae	Otolithus ruber (Schneider, 1801)	Tiger toothed croaker	34	458	March	41.7	0.05	0.81
75 Scianidae	Johniops sina (Cuvier, 1830)	Sin croaker	17	80	March	59.7	0.1	0.85
76 Scombridae	Rastrelliger kanagurta (cuvier, 1817)	Mackerel	12	15	May	51.4	0.05	6.84
77 Scombridae	Rastrelliger kanagurta	Mackerel female	27	259	September	58.4	0.18	7.65
78 Scombridae	Rastrelliger kanagurta	Mackerel male	23	127	June	55.6	0.17	5.09
79 Scombridae	Rastrelliger kanagurta	Mackerel immature	18	70	June	64.8	0.09	2.08
80 Scombridae	Rastrelliger kanagurta	Mackerel female	21	115	October	65.4	0.14	5.17
81 Scombridae	Elachata nigra	Kadal varal	46	750	October	59.3	0.14	1.38
82 Scombridae	Rastrelliger kanagurta	Mackerel	40 21	119	March	69.7	0.15	1.94
82 Scombridae	Elachata nigra	Kadal varal	44	514	March	65.6	0.15	0.68
83 Scollibridae 84 Serranidae	<i>Epinephles latifasciatus</i> (Temminck and Schlegel, 1842)	Banded grouper	44 27	283	March	41.4	0.1	0.08
85 Sillaginidae	(Forminick and Schegel, 1842) Sillago sihama (Forsskal, 1775)	Silver sillago	14	30	March	112	0.12	3.39
86 Sparidae	Argyrops spinifer (Forsskal, 1775)	King soldier bream	20	190	March	37.8	0.06	0.43
87 Sphyraenidae	Sphyraena forsteri (Cuvier, 1829)	Big eye barracuda	30	125	March	58	0.1	0.61
88 Sphyraenidae	Sphyraena obtusata (Cuvier, 1829)	Obtuse barracuda	23	80	March	59.9	0.09	0.84
89 Sphyraenidae	Sphyraena jello (Cuvier, 1829)	Barracuda	45	510	March	34.6	0.09	0.53
90 Stromateidae	Pambus argentius (Epiphrases, 1788)	Silver pomfret	16	150	March	44	0.1	1.08
91 Synodontidae	Saurida undosquamosis (Richardson, 1840)	Brush tooth lizard fish	24	98	March	57.6	0.11	1.22
92 Teraponidae	<i>Therapon jarbua</i> (Forsskal, 1775)	Jarbua therapon			October	33.7	0.1	1.94
93 Teraponidae	Terapon jarbua	Jarbua therapon				24.6	0.06	0.96
94 Torpedinida	Narcine sp	Electric ray	23	1.1	March	72.7	0.1	0.78
95 Trachinidae	Percis pulchella	Rosy grub fish	14	35	March	22.2	0.04	0.72
96 Trichiuridae	Lepturacanthus savala (Cuvier, 1917)	Savalai hair tail	47	87	March	68	0.1	0.88
97 Uranoscopide Fish Egg	Chanoscopes sp	Star gazers	28	399	March	37	0.11	0.87
1 Scombridae (b) Shellfish <i>Prawn</i>	Rastrelliger kanagurta	Mackerel egg			September	462	1.38	5.71
1 Penaeidae	Penaeus indicus (H.Milne Edwards, 1837)	Indian white shrimp	13	14	February	129	0.17	1.35
2 Penaeidae	Penaeus indicus	Indian white shrimp	17	22	February	163	0.18	1.34
3 Penaeidae	Metapenaeus monoceros (Fabricius, 1798)	Speckled shrimp	7	2.75	February	144	0.18	0.95
4 Penaeidae	Metapenaeus monoceros	Speckled shrimp	9	6.25	February	123	0.17	1.22
5 Penaeidae	Penaeus monodon (Fabricius, 1798)	Giant tiger prawn	19	45	February	118	0.25	1.02
6 Penaeidae	Metapenaeus dobsoni (Miers, 1878)	Kadal shrimp	9	3.13	February	120	0.23	1.34
7 Penaeidae	Metapenaeopsis stridulens (Alcock, 1905)	Fiddler shrimp	8	2.3	March	143	0.23	0.98
Crah								

Table 1—contd

Crab

(continued)

		140101	onner					
1 Scyllaridae	Scylla seffata	Mud crab	10	180	May	54.8	0.15	0.75
	(Forsskal)							
2 Scyllaridae	Scylla serrata,					51.5	0.09	0.64
	claw meat							
3 Portunidae	Portunus sanquinolentus	Red spot crab	13	110	May	52.4	0.11	0.58
	(Herbst)							
4 Portunidae	Charibdis cruciata (Herbst)	Coral crab	10	156	May	56.5	0.11	0.7
5 Portunidae	Charibdis cruciata	Coral crab	11	190	March	54.2	0.09	0.76
6 Portunidae	Portunus pelagicus	Sand Crab	14	111	May	66.8	0.14	0.68
	(Herbst)							
Antartic krill								
1 Euphausidae	<i>Euphausia</i> sp	Antartic krill	Whole			102	0.13	_
2 Euphausidae	Euphausia sp	Antartic krill	Tailmeat			33.3	_	_
Cuttle fish	X X							
1 Sepiidae	Sepia aculeate	Cuttle fish				162	0.22	1.3
2 Sepiidae	Sepia aculeata	Cuttle fish	10	67	March	130	0.24	0.92
Squid	•							
1 Loliginidae	Loligo duvauceli	Squid	15	52	March	198	0.34	1.4
C	(Orbingy)	*						
2 Loliginidae	Loligo duvauceli	Squid				188	0.23	1.33
0	(Orbingy)							

Table 1—contd

families was done by the method of ANOVA for unequal numbers of observations.

3. Results and discussion

Ninety-seven samples of fish comprising 43 families, seven samples of prawn from a single family, six samples of crab from two families, two samples of cuttle fish, two samples of squid, Antarctic krill, and mackerel egg were analysed, the results of which are given in Table 1(a) and (b). In fish, the cholesterol content ranged from 22.2 mg% (Percis pulchella) to 148 mg% (Lethrinus cinerius). However, 55% of the fishes had a cholesterol content between 45 and 65 mg%. In prawns, the range was from 118 to 163 mg%, while in crabs, it was from 51.5 to 66.8 mg%. Squids (188-198 mg%) and cuttle fish-(130 to 162 mg%) showed high cholesterol contents as did mackerel egg (462 mg%). Ackman (1992) reported on the cholesterol contents of 16 species of fish and three species of crustaceans. The range was from 15 to 151% in the case of fish and 71 to 78 mg% in the case of crabs. In the present study, the cholesterol content was higher in shell fish than in fish. Connor and Lin (1982) have reported that the cholesterol contents of fish and shellfish are generally low, with the exception perhaps of shrimp. In the present study, comparatively high concentrations of cholesterol were observed in prawns, squid and cuttlefish, mackerel egg and certain species of fish. Although prawn has a high cholesterol content, defatted prawn powder was found to have a serum cholesterol-lowering property in albino rats (Ammu, Stephen & Devadasan, 1989). In the present study, it was found that the cholesterol content of crab was comparatively low. It is reported that sterols, other

than cholesterol, are present in some seafoods (Kritchevsky & Dehoff, 1978). Kritchevsky, Tepper, Dehoff and Holmes (1967) have reported that crab contains 57% cholesterol and 37% brassicasterol. In other seafoods, cholesterol accounts for 90-95% of sterols and hence their estimation using ferric chloride would give a true picture. Thus, the values reported for cholesterol in crabs might have been slightly overestimated. The eggs of mackerel had a very high cholesterol content, similar to hen egg (450 mg%). According to Iwasaki and Harada (1984), the cholesterol content of eggs of 25 species of fish was in the range of 250-650 mg/100 g. The results of statistical analysis for cholesterol content in fish are given in Tables 2 and 3. Significant differences were noted in the cholesterol contents of the families of fish analysed. The coefficient of variation in most of the families was within 15%, which confirms that the cholesterol content was somewhat constant within a family, but differed between families. Thus, cholesterol content would appear to be genetically determined. The families of fish with high cholesterol content were Leiognathidae, Lactaridae, Lethrinidae, Lutjanidae. Sillaginidae and Ephippidae. The families with low cholesterol content were Acanthuridae, Chanidae, Elopidae, Cyprinidae and Teraponidae. In fresh water fish, the cholesterol content was found to be low when compared to their marine counter-parts. Most of the fresh water fish analysed, however, were cultured varieties. Generally, it was seen that smaller specimens of the same species of fish had slightly higher cholesterol levels when compared with the bigger ones. Idler, Tanura and Wainai, (1964) reported that no obvious difference existed in the composition of the muscle of male and female scallops. We have observed some increase in the cholesterol content in the case of female mackerel, but the increase may

Table 2
Average, standard deviation and coefficient of variation of contents of cholesterol, NSM and fat within families

No.	Fish	No. of species	Average cholesterol with SD	c.v cholesterol	Average NSM with SD	c.v. NSM	Average fat with SD	c.v Fat
1	Acanthuridae	1	33.81		0.05		0.99	
2	Aiidae	2	57.6 ± 1.02	1.77	0.09		1.16 ± 0.62	53.6
3	Ariommidae	1	59.90		0.25		2.40	
4	Belonidae	1	55.00		0.07		0.86	
5	Bothidae	2	58.3 ± 9.02	15.5	0.12 ± 0.01	9.97	0.43 ± 0.18	42.06
6	Carangidae	17	57.3 ± 15.79	27.5	0.13 ± 0.06	43.8	1.75 ± 1.57	89.56
7	Chanidae	1	33.60		0.05		0.98	
8	Chirocentridae	3	41.64 ± 3.74	8.98	0.12 ± 0.08	62.6	1.99 ± 0.61	30.55
9	Cichlidae	2	$46.5 \pm 6.66^\circ 14.3$	0.07 ± 0.01	13.6	0.61 ± 0.14	22.7	
10	Clupeidae	6	62.3 ± 13.66	21.9	0.17 ± 0.11	61.4	329 ± 2.18	66.35
11	Cynoglossidae	2	43.8 ± 6.4	14.6	0.08 ± 0.24	29.2	0.36 ± 0.16	45.81
12	Cyprinidae	2	36.1 ± 0.14	0.39	0.07 ± 0.01	16.7	_	
13	Elopidae	1	32.87		0.05		0.47	
14	Engraulidae	1	54.63		0.26		3.15	
15	Ephippidae	1	82.68		0.26		3.19	
16	Gerridae	2	$49.9 \pm 7.5^{\circ}15.1$	0.09 ± 0.08	82.6	2.28 ± 1.36	59.74	
17	Haemulidae	3	59.5 ± 5.2	8.75	016 ± 0.05	33.1	2.08 ± 2.21	106.66
18	Hemiramphidae		52.51		0.12		1.74	
19	Lactaridae	1	97.37		0.38		6.00	
20	Leiognathidae	3	95.2 ± 10.12	10.6	0.20 ± 0.09	47.1	1.48 ± 0.53	35.99
21	Lethrinidae	1	147.83	1010	0.37		3.26	00100
22	Lutjanidae	2	88.0 ± 10.57	12.0	0.22 ± 0.03	11.5	6.37 ± 1.89	29.63
23	Megalopidae	1	46.18	1210	0.07	1110	0.62	27100
24	Mugilidae	1	62.91		0.25		2.24	
25	Mullidae	2	45.9 ± 3.97	8.64	0.12 ± 0.03	26.7	0.95 ± 0.08	9.09
26	Mytiobatidae	1	56.00	0101	0.09	2017	0.67	,
27	Nemipteridae	3	59.92 ± 4.94	8.25	0.11 ± 0.02	15.6	0.82 ± 0.02	2.51
28	Polynemidae	2	66.1 ± 3.44	5.20	0.11 ± 0.02 0.11 ± 0.01	8.63	0.02 ± 0.02 0.97 ± 0.16	16.85
29	Priacanthidae	1	53.07	0.20	0.10	0.02	0.52	10100
30	Psettodidae	1	41.62		0.07		0.54	
31	Scianidae	7	60.2 ± 12.16	20.2	0.07 ± 0.07	58.3	0.96 ± 0.11	11.28
32	Scombridae	8	61.3 ± 6.12	9.99	0.12 ± 0.05	37.6	3.10 ± 2.54	81.96
33	Serranidae	1	41.40		0.08	57.0	0.42	01.90
34	Sillaginidae	1	112.29		0.12		3.39	
35	Sparidae	1	37.77		0.06		0.43	
36	Sphyraenidae	3	57.77 50.8 ± 14.09	27.7	0.00 ± 0.004	4.82	0.45 0.66 ± 016	24.34
37	Stromateidae	1	43.95	21.1	0.10	1.02	1.08	27.27
38	Synodontidae	1	57.60		0.10		1.22	
39	Teraponidae	2	29.2 ± 6.39	22.0	0.08 ± 0.03	39.9	1.45 ± 0.69	47.79
40	Torpedinidae	1	72.70	22.0	0.08±0.05 0.10	57.7	0.78	71.19
40	Trachinidae	1	22.24		0.04		0.78	
41	Trichiuridae	1	68.04		0.10		0.72	
42	Uranoscopidae	1	37.00		0.10		0.87	
<i>с</i> г	Granoscopidae	1	57.00		0.11		0.07	

Table 3

ANOVA for cholesterol content between families

Source	SS	df	MSS	F
Total Between family Error	34023.81 26312.72 7711.09	96 42 54	626.4933 142.798	4.387271 <i>p</i> < 0.001

not be due to sexual difference but due to the months of their collection. Idler et al. reported a variation, during different seasons, in the cholesterol content of the muscle, suggesting a relationship between the metabolism and biosynthesis of these sterols. NSM and fat contents varied from species to species. Surprisingly, the coefficient of variation within families was found to be quite high. The content of fat varies with size of fish and season. (Nair & Nair, 1985; Smith, Hardy, & Young, 1980). The fat content was found to be high in many fish during the month of October. Smith et al. have reported high values for the fat content of mackerel in the months September–November. According to Nair and Nair, the maximum lipid content for sardine oil was during October to December and the minimum was during April to June. In the present study, the contents of NSM and fat were not constant in any of the families. NSM in fish ranged from 0.04% (*Cynoglossus* sp) to 0.380% (*Lutjanus gibbus*) while fat ranged from 0.24% (*Percis pulchella*) to 7.70% (*Lactarius lactarius*). In prawns NSM varied from 0.165 to 0.246% and fat from 0.95 to 1.35%.

No correlation existed between the content of cholesterol and fat or between NSM and fat as the coefficient of correlation was 0.33 and 0.34, respectively.

4. Conclusion

The high values obtained for cholesterol contents in mackerel eggs indicate that those with heart problems can avoid eating such products. Shell fish and certain families of fish have comparatively high contents of cholesterol, even more than beef (beef = 65 mg%).

From the point of view of keeping cholesterol consumption low, fresh water fish appears to be a better alternative to marine fish.

The current trend is for increased consumption of fish and fishery products and, in this context, data on cholesterol contents of these products will help in the formulation of diets for controlling the intake of cholesterol.

Acknowledgements

The authors are thankful to Dr. K. Ravindran, Director, CIFT for his permission to publish the paper. Technical assistance rendered by Smt. P. A. Jaya and Smt. N. Lekha of the Biochemistry and Nutrition Division of CIFT is also gratefully acknowledged.

References

- Ackman, R. G. (1992), Bioavailability of Omega 3 PUFA. In G. J. Flick & R. E., Martin (Eds.), Advances in seafood biochemistry composition and quality (p. 269–289). Lancaster and Basel: Technomic Publishing.
- Ammu, K., Stephen, J., & Devadasan, K. (1989). Influence of dietary proteins on cholesterol levels in albnino rats. *Fishery Technology*, 26 (2), 125–130.
- Ammu, K., Sankar, T. V., & Devadasan, K. (1996). Influence of vitamin

E supplementation of dietary fish oils in lipid profile and blood glucose. *Journal of Food Science and Technology*, 33 (2), 128–132.

- AOAC. (1990). Official methods of analysis (15 th ed., pp. 957–958). Washington, DC: Association of Official Analytical chemists.
- Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. *Canadian Journal of Biochemistry and Physiology*, 37, 911–917.
- Connor, W. E., & Lin, D. S. (1982). The effect of shellfish in the diet upon the plasma lipid levels in humans. *Metabolism*, 31, 1046–1105.
- Idler, D. R., Tanura, J., & Wainai, J. (1964). Seasonal variations in the sterol fat and unsaponifiable components of scallop musle. *Fisheries Research Board of Canada*, 21 (1), 1035–1042.
- Iwasaki, M., & Harada, R. (1984). Cholesterol content of fish gonads and livers. Bulletin of the Japanese Society of Scientific Fisheries, 50 (9), 1623.
- Kritchevsky, D., & Dehoff, J. L. (1978). Sterol content of seafood as a function of analytical method. *Journal of Food Science*, 43, 1786– 1787.
- Kritchevsky, D., Tepper, S. A., Ditullo, N. W., & Holmes, W. L (1967). The sterol of seafood. *Journal of Food Science*, 32, 64–66.
- Nair, P. G. V., Devadasan, K., & Antony, P. D. (1985). Hypocholesterolemic effect of fish proteins and fish oils in albino rats. In K. Ravindran, N. Unnikrishnan, P. A. Perigreen, P. Madhavan, A. G. Gopalakrishna Pillai, P. A. Panicker, & M. Thomas (Eds.), *Harvest* and post harvest technology of fish (pp. 445–451). Cochin, India: Society of Fishery Technologists.
- Nair, P. G. V., & Gopakumar, K. (1981). Effect of long-term feeding of a coconut oil-based and a combined coconut oil-fish diet on serum cholesterol and fattyacid composition of different organs of albino rats. *Journal of Food Science and Technology*, 18, 187–191.
- Nair, P. G. V., & Nair, M. R. (1985). Fattyacid composition of muscle and skin lipids of oil sardine. In K. Ravindran, N. Unnikrishnan, P. A. Perigreen, P. Madhavan, A. G. Gopalakrishna Pillai, P. A. Panicker, & M. Thomas (Eds.), *Harvest and post harvest technology* of fish (pp. 441–444). Cochin, India: Society of Fishery Technologists.
- Rudel, L. L., & Morris, M. D. (1973). Notes on methodology, determination of cholesterol using O-phthalaldehyde. *Journal of Lipid Research*, 14, 364–366.
- Sanchez-Muniz, F. J., Higon, E., Cava, F., & Viejo, T. M. (1991). Acceptability of diets containing olive oil fried sardine (*Sardina pil-chardus*) in the prevention of dietary hypocholesterolemia. *Journal of the Science of Food and Agriculture*, 56, 155–165.
- Sehat, N., & Niedwetzki, G. (1998). Food labelling in Germany including European Union aspects. Food Technology, 52 (3), 58–61.
- Smith, J. G. M., Hardy, R., & Young, K. W. (1980). A seasonal study of the storage characteristics of mackerel stored at chill and ambient temperature. In J. J. Conell (Ed.), *Advances in fish sciences & technology* (pp. 372–378). Farnham, UK: Fishing News Books.
- Sullivan, D. M., & Carpenter, D. E. (Eds.). (1993). Methods of analysis for nutrition labelling (pp. 3–11). Washington, DC: AOAC International.